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Chapter 15

ELECTRIC  POTENTIALS
and

ENERGY  CONSIDERATIONS

A.)  Energy Considerations and the Absolute Electrical Potential:

1.)  Consider the following scenario:  A single, fixed, point charge Q
sits in space with nothing around it.  A second positive charge q is brought in
a distance r units from the first charge.  Once in position, q is released and,
being completely free, accelerates.

a.)  It should be obvious that q's acceleration is due to its inter-
action with the electric field generated by the fixed charge.  Although
there is nothing wrong with this interpretation, there is another way
we could look at the situation.

b.)  Considering the idea of energy:  On the assumption that static
electric fields (i.e., electric fields that do not change with time) are
associated with conservative forces (in fact, they are), we could claim
that q's acceleration was the consequence of its converting electrical
POTENTIAL ENERGY afforded it by its presence in Q's electric field to
KINETIC ENERGY.

c.)  As we have seen in previous chapters, the potential energy
function for a particular force field is a mathematical contrivance
designed to allow us to keep track of the amount of kinetic energy a
body can potentially pick up if allowed to freefall in the force field.

i.)  Put another way, if you know how much potential energy a
body has when at two different points in a force field, you can
determine how much work the field does as the body moves from
the one point to the other.  Knowing the net amount of work done,
you can use the work/energy theorem to determine the body's
change of kinetic energy.

d.)  In the case of gravitational force fields, the amount of
gravitational potential energy a body has is dependent upon the object's
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mass (Ug = mgh1).  In the case of electric forces, the amount of
electrical potential energy an object has depends upon the object's
charge.  The larger the charge, the more electrical potential energy the
body will have.

e.)  The electric field is a vector whose magnitude tells us the force
per unit charge available at a given point in the field.  Would it not be
useful to define a similar quantity related to the concept of electrical
potential energy?

f.)  Just such a quantity has, indeed, been defined.  It is called the
absolute electrical potential of a point-of-interest due to the presence of
an electric-field.  It is a SCALAR quantity that tells you how much
potential energy per unit charge there is available at a particular point
in an electric field.

2.)  Mathematically, the absolute electrical potential Va at a Point A in
space is defined as:

VA = (UA/q),

where UA is the amount of potential energy a charge q will have if placed at
Point A.

a.)  The units for the absolute electrical potential are "energy-per-
charge-unit", or joules per coulomb.  This unit is given a special
name: it is called a VOLT.

b.)  The absolute electrical potential at an arbitrary Point A is
sometimes referred to as "the absolute voltage at Point A."

c.)  Example:  A +4 coulomb charge is found to have 8000 joules of
potential energy when placed at a particular point in an electric field.
What is the absolute voltage (the absolute electrical potential) at that
point?

i.)  From the definition:

 VA = (U/q)A
        = (8000 j)/(4 C)
        = 2000 joules/C
        = 2000 volts.
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Point B

positive charge will accelerate
          freely from A to B;
negative charge will accelerate
          freely from B to A.

FIGURE 15.1

Note:  If you know VA and want to know the amount of potential energy
a charge q has when at A (i.e., UA), the manipulated expression UA = qVA
will do the job.  Example:  A  2x10-12 coulomb charge is placed in an electric
field at a point whose electrical potential is 2500 volts.  How much potential
energy will the charge have?

Solution: UA = qVA = (2x10-12 C)(2500 volts) = 5x10-9 joules.

3.)  Consider a positive
charge placed and released at
Point A in an electric field (the
field lines are shown in Figure
15.1).  The charge will accelerate,
picking up kinetic energy as it
does, and sooner or later finds it-
self at Point B.  The following
observations can be made about
Points A and B.

a.)  Just as massive
objects in a gravitational
field naturally freefall
from higher to lower
potential energy, positive
charges accelerate in
electric fields from higher
voltage points to lower voltage points.  In other words, VA must be
greater than VB.

Note 1:  With mass, one never has to worry about objects freefalling
upward from a lower potential energy level to a higher potential energy level.
After all, there is only one kind of mass and the earth's gravity always pulls
it downward.  Unfortunately, there are two kinds of charges--positive and
negative ones--each of which reacts exactly the opposite to the other when put
in an electric field.  Our theory has been set up on the assumption that
positive charges accelerate in the direction of electric field vectors, which
means positive charges accelerate from higher to lower voltages.  That
means negative charges will do exactly the opposite.  (To see this, think about
the direction an electron will accelerate if put at the lower voltage, Point B).

Note 2:  It does not matter whether the electric field lines are getting
closer together or further apart (that is, whether the electric field intensity is
getting larger or smaller)--the absolute voltage becomes less as you proceed
in the direction of electric field lines.
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B.)  Work and Voltage Differences:

1.)  The amount of work W done by a conservative force field on a body
that moves from Point A to Point B in the field is intimately related to the
body's change of potential energy.  That is:

W = -∆U.

2.)  In an electric field, the amount of work per unit charge done on a
charged body as it moves from Point A to Point B in the field equals:

  W/q = -∆U/q
          = -(UB - UA)/q
          = -[(UB /q) - (UA/q)]
          = -(VB - VA)

   ⇒       W/q = -∆V.

a.)  ∆V is formally called the electrical potential difference between
Points A and B.  In everyday usage, it is sometimes referred to as "the
voltage difference between Points A and B."

Note:  Although in some texts there is very little notational delineation
between the two, there is a BIG difference between a field's voltage at a point
and a voltage difference between two points.  In this text, an absolute
electrical potential will either be subscripted to designate the point to which it
is attached or made evident through the context of the situation.  The ∆ will
occasionally be omitted when referring to a voltage difference, most notably
when dealing with a power supply like a battery in an electric circuit.

When in doubt, look to the context of the problem.  If the voltage value
is attached to a particular point, it is an absolute electrical potential (i.e., an
absolute voltage).  If the voltage value is related to a voltage change between
two points, you are looking at an electrical potential difference (i.e., a voltage
difference).

Example:  A 6 volt battery has a 6 volt electrical potential difference
between the + and - terminals.  As such, the number tells you how much
work per unit charge the battery will do on charge-carriers as they travel
through a wire from one terminal to the other.
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C.)  Electrical Potentials and Constant Electric Fields:

1.)  For constant electric
fields, we can calculate the work per
unit charge as:

    W/q = (Fe 
. d)/q,

where Fe is the force on the charge
due to the electric field E, and d is a
displacement vector defining the
separation between the relative
orientation of the Points A and B
(see Figure 15.2).

a.)  Rearranging and
manipulating yields:

     W/q = (Fe/q) . d

  = E . d.

b.)  Combining this result with W/q = -∆V we get:

     E . d = - ∆V.

c.)  As can be seen, this relationship links the electrical potential
difference between two points in a constant electric field to:

i.)  The electric field vector, and;

ii.)  A displacement vector between the two points-in-question.

iii.)  This is a very powerful, useful expression that will come in
handy.  UNDERSTAND IT WELL!

2.)  Consequences of E . d = -∆V:  Consider the electric field lines shown
in Figure 15.3 on the next page (ignore gravity).  Given that VA = 12 volts, VB
= 3 volts, and the distance between Points A and B, Points A and C, and
Points A and D is 2 meters:
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FIGURE 15.4
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a.)  Determine the mag-
nitude of the electric field:

i.)  Moving from A to B
along the E field lines, we
can write:

             E . d = -∆V
   EdAB cos ξ  = -(VB - VA),

where ξ  is the angle
between the line of E
and the line of dAB.

ii.)  We know dAB, θ,
and the voltages at Points A
and B.  All we do not know
is the magnitude of the
electric field.  Solving for
that quantity yields:

E = -(VB - VA)/(dAB cos θ)

   = -(3 v - 12 v)/[(2 m)(cos 0o)]
   = 4.5 volts/meter.

Note:  A volt per meter is equal
to a newton per coulomb.

b.)  Determine voltage VC:

i.)  Once again, we know:

     E . d = -∆V
 EdAC cos θ = - (VC - VA).

ii.)  Looking at Figure 15.4, θ =
120o (θ is supposed to be the angle
between the line of E and the line of
dAC, where dAC is a vector directed
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from the starting Point A to the finishing Point C).  Plugging in the
known values and solving, we get:

      VC =   VA    -        E        dAC    cos θ

= (12 v) - (4.5 nt/C)(2 m) cos 120o

       = 16.5 volts.

Note:  The fact that the voltage at Point C is larger than the voltage at
Point A makes sense: the voltage should be larger "upstream," so to speak, in
the electric field.

c.)  Determine VD:

i.)  Moving from A to D, we have:

     E . d = -∆V
             EdAD cos θ = - (VD - VA).

ii.)  Noting that the angle between the line of E and the line of
dAD is θ = 90o (although this is not explicitly stated in Figure 15.3,
this should nevertheless be obvious from looking at the sketch), we
solve for VD:

     VD =      VA      -            E           dAD  cos θ

= (12 volts) - (4.5 volts/m)(2 m) cos 90o

       = 12 volts.

Important Note 1:  The line between Points A and D is perpendicular to
the line of the electric field.  That means the dot product E . d is zero (the dot
product of vectors perpendicular to one another will always be zero), which in
turn means ∆V is zero.  If the change of the electrical potential between two
points is zero, the voltage at each point must be the same.  That is exactly
what we have here: VA = VD = 12 volts.

Important Note 2:  There is a group of points each of which has a
voltage of 12 volts.  Connecting those points defines an equipotential line.
Equipotential lines are always PERPENDICULAR to electric field lines (in
three dimensional situations, you can have whole equipotential surfaces).
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equipotential lines  (dashed in the sketch below)
          generated by two equal point charges

FIGURE 15.5

E. fld. lines

+Q +Q

FIGURE 15.6

d

E

V
A

B
V

Constant     and E d

Previously, we
determined the electric
field lines generated by two
equal, positive charges.
Equipotential lines for that
situation are shown in
Figure 15.5 to the right.

D.)  The Electrical Potential of a Point Charge:

1.)  Just as it was possible to derive a general algebraic expression for
the size of the electric field created by a SINGLE POINT CHARGE Q, it is also
possible to derive a general algebraic expression for the absolute electrical
potential (i.e., the amount of potential energy per unit charge) generated by a
field-producing point-charge Q as a function of the distance r from the
charge.

2.)  The general relationship between a constant electric field and its
electrical potential function was previously
derived as:

∆V = -E.d        (Equation 1),

where ∆V = VB - VA is the electrical potential
difference between two points A and B in the
electric field, E is the electric field vector, and d
is a vector beginning at Point A and ending at
Point B.  Figure 15.6 re-caps the set-up.
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FIGURE 15.7
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3.)  How does this expression change when either the field or the path
varies?

a.)  The W/q done as a test charge moves from Point A to Point B
will always equal the change of electrical potential between the two
points.  As such, the left-hand side of Equation 1 will not change at all.

b.)  The E.d term is really (F/q).d (i.e., the work--F.d--per unit
charge q).  If F varies, d varies, or the angle between F and d varies,
the work done along one section of the path will not be the same as the
work done along another
section.

c.)  To deal with this
problem:

i.)  Define a
differential path
length dr along an
arbitrarily selected
section of the path (see
Figure 15.7);

ii.)  Determine the
amount of work per
unit charge (i.e., E.dr)
done on a charge
moving over dr;

iii.)  Then sum over
the entire path using
integration (i.e., ∫E.dr).

d.)  Summarizing:

   ∆V = -E.d

becomes:

    
∆V = − E • dr∫ ,

where dr is an arbitrary, differential vector along the path.
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FIGURE 15.8
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4.)  With all this in mind, we want to derive a general algebraic expres-
sion for the electrical potential a distance r units from a point charge Q.

a.)  To begin with, we must decide where the electrical potential
should be zero.  A potential energy function is traditionally defined as
zero where its associated force function is zero.  As an electrical
potential is nothing more than a modified potential energy function,
we will define its zero where its associated electrical field is zero.  In
the case of a point charge, that is at infinity.

b.)  Having made that de-
cision, we must determine the
amount of work per unit
charge available due to the
electric field-produced by a
field-producing point charge
as we move from infinity to a
point r units from the point
charge (see Figure 15.8).

c.)  Noting that the
electrical potential is ZERO at
infinity, (i.e., that V(∞) = 0)

and the electric field function for a point charge is 
    

1
4πεo

Q
r2
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5.)  There are a couple of things to notice about this expression:

a.)  The equation looks something like the magnitude of the electric
field equation for a point charge (i.e., it looks like kQ/r2).  The resem-
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blance is superficial.  Electrical potentials are energy-related scalar
quantities.  That means they can be negative, but being so has nothing
to do with direction.

Note:  Gravitational potential energy is meaningful only in the context
of determining the work done by a conservative gravitational force as a body
moves from one point to another in the field.  It is perfectly acceptable for a
potential energy value to be negative at some point--all that HAS TO BE TRUE
is that Wfld. = - ∆U.  The same is true of electrical potentials.  It makes no
difference what their values are, positive or negative, just as long as the
amount of work per unit charge (W/q) available to a charge as it moves
through a given electric field equals minus the change in electrical potential
(i.e., minus the voltage change, or -∆V) between the beginning and end
points of the motion.

b.)  Vat A due to pt.chg.Q = kQ/r works equally well for positive or
negative charges.  But unlike the electric field equation in which
charge quantities are always inserted as magnitudes, the sign of the
charge must be included when solving for the electrical potential of a
point charge.

In other words, a positive point charge will produce a positive
electrical potential and a negative point charge will produce a negative
electrical potential.

Note:  The variable r tells you the distance between the point of interest
and the point charge.  When used in the electrical potential equation for a
point charge, this value must always be positive.  Why?  A charge at the
origin of a coordinate axis is going to provide as much potential energy per
unit charge at x = 2 meters as it will at x = -2 meters.

E.)  Electrical Potential of a System of Point Charges:

1.)  A group of point charges will produce some net electric potential
field in the space around them.  That field will be the SCALAR SUM of the
electrical potentials generated by the individual
point charges involved in the configuration.

2.)  Example:  A 3 microcoulomb (  µC) charge
is placed at x = -3 meters and a -3   µC charge is
placed at x = 3 meters (see Figure 15.9 to the right).
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a.)  What is the net electrical potential at x = 0?

      Vo = Vdue to Q1 + Vdue to Q2
   = k Q1/r1 + k Q2/r2
   = (9x109)(3x10-6 C)/(3 m) + (9x109)(-3x10-6 C)/(3 m)
   = 0.

Note:  At first glance, this probably seems bizarre.  After all, if you
released a positive charge at x = 0, it will certainly accelerate toward the
negative charge.  That is to say, it will certainly have potential energy.

The response to this is, "Not necessarily."  If you put a mass 1 meter
above the ground, you could define 1 meter above the ground to be the zero
potential energy level.  Let the mass loose and it accelerates even though its
potential energy has been defined as zero.

Potential energy is meaningful only in the context of potential energy
changes.  Only then are they related to the work done by the field as the body
moves through it.  The same is true of electrical potentials.  You can have
zero electrical potential at some spot as long as the electrical potential down-
stream (i.e., further down along the electric field lines) is even lower (in this
case it would have to be negative).

b.)  What is the net electric potential at x = +1 meter?

       V1 = Vdue to Q1 + Vdue to Q2
 = k Q1/r1 + k Q2/r2

    = (9x109)(3x10-6 C)/(4 m) + (9x109)(-3x10-6 C)/(2 m)
 = -6.75x103 volts.

Note:  The electric field along the x-axis between the charges is to the
right.  Notice that makes x = 1 "downstream" relative to the origin.  Notice
also that the electrical potential at x = 1 is less than at the origin, just as was
predicted in the Note above.

F.)  Deriving the Electrical Potential Function for an Extended, Charged
Object Using a Differential Charge Approach:

1.)  Determine a general expression for the electrical potential along
the central axis of a hoop of radius R and upon which resides a net charge Q.
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FIGURE 15.10
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a.)  Define a differential
amount of charge dq on the
hoop.  Also, define the
distance between the
differential charge and an
arbitrary point (x, 0) on the
central axis (all of this is
shown in Figure 15.10).

b.)  The differential
electrical potential dV at (x,
0) due to the differential
charge dq is:
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c.)  The only variable in this expression is dq (all else is fixed in the
problem--even x has been defined as a specific coordinate).  As such,
we can pull out the constants and integrate, yielding:
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2.)  Consider now a flat disk of radius R with a net charge Q on its
surface.  What is the electrical potential at an arbitrary point (x, 0) along its
central axis (see Figure 15.11 on the next page)?

a.)  If we assume a differential charge dq resides within a hoop of
radius a and thickness da, we can use the expression derived above for
the electrical potential of a hoop by substituting dq for Q and a for R.
Doing so yields a differential electrical potential dV of:
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FIGURE 15.11
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b.)  The problem?
The variable dq varies as
a varies.  To accommo-
date, we have to express
dq in terms of a.

c.)  A disk with
charge Q uniformly
distributed over its
surface will have a
surface charge density σ
equal to:

    σ = Q/(πR2).

d.)  Knowing the
radius a and differential
thickness da of the hoop, and having defined σ, we can write:

   dq = σdA,

where dA is the differential area of the hoop.  This differential area
will be the product of the hoop's circumference and thickness, or:

           dA = (2πa)da.

 e.)  Putting it all together, we get:
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f.)  With this, the net electrical potential for the entire disk along its
central axis becomes:
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G.)  More Fun With Extended, Charged Objects:

1.)  So far, we have dealt with extended objects by determining the dif-
ferential electrical potential due to a differential point charge on the object,
then by integrating to determine the total electrical potential due to all
charges on the object.
Continuing on in this fashion,
consider a rod of length 2L with a
total charge Q distributed uni-
formly upon its surface (see
Figure 15.12).  Determine the
electrical potential at point (b, 0)
on the axis.

2.)  We must begin by
defining a differential charge dq
located some distance a units up
the vertical axis.  Assuming the
section length upon which dq
resides has a differential length
da, and defining λ as the charge
per unit length on the rod, we
can write the differential charge
as dq = (λ)da .

Note:  The charge per unit
length in this case will equal Q/2L.
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3.)  To determine the electrical potential at (b, 0):

a.)  The electrical potential due to a point charge is:

  
V(r) = 1

4πεo

q
r

,

where the charge q is written with the sign of its charge intact and r is
the distance between the field-producing charge q and the point of
interest.

b.)  In our case, the point charge is the differential charge dq.
Additionally, r = (a2 + b2)1/2.

c.)  Putting it all together, we can write the differential electrical
potential at (b, 0) as:

  
dV = 1

4πεo

dq
(a2 + b2 )1/2 .

d.)  Due to the symmetry of the problem, we can integrate from a =
0 to a = L, then double that result.  Substituting in for dq and λ and
doing this integration, the net electrical potential at (b, 0) is:
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/∫∫ da.

Note:  You may need a book of integrals to solve this, depending upon
how much experience you have had with Calculus.  Continuing:
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H.)  Absolute Electrical Potentials for a Spherically Symmetric Charge
Configuration:

1.)  There are times when it is not convenient to define a differential bit
of charge, determine dV for that charge at a point of interest, then integrate
to determine the net electrical potential at the point.  In such cases, we must
revert to a more fundamental approach.

2.)  How did we derive the general expression for the absolute electrical
potential of a point charge back in Section D-3-c?  The procedure is presented
below:

a.)  We calculated the amount of work per unit charge (i.e., ∫E.dr)
available as we moved from infinity to some arbitrary point r in the
point charge's field.

b.)  We noticed that W/q = -∆U/q = -∆V = -[V(r) - V(∞)], where V(∞)
was defined as zero.

c.)  We combined Part a and Part b to generate the equation:

      
    
V(r) = − Ept.chg. • dr

r=∞

r

∫ ,

where Ept. chg. = Q/(4πεor2).

Note:  If this isn't clear, look back at the section in which this deriva-
tion was actually done.

3.)  The procedure outlined above was used to determine the electrical
potential at some point r units from a point charge, but the procedure itself
can be used on any charge configuration.



90

FIGURE 15.13

charged spherical shell

R
2

1
R

= ka

4.)  To see this, consider the following example:  A thick spherical shell
of inside radius R1 and outside radius R2 (see Figure 15.13) is shot full of
charge such that its volume charge density is
ρ = ka, where a is an arbitrary distance from
the center of the sphere to a point inside the
shell, and k has a magnitude of one with the
appropriate units.  Determine the electrical
potential function V(r) for r > R2, R2 > r > R1,
and for R1 > r.

5.)  For r > R2:

a.)  What is the first thing that has
to be done?  Decide where the electrical
potential is to be zero.  In this case, the electric field generated by the
charge configuration is zero at infinity, so that is where we will define
our zero electrical potential point.

b.)  We want to use the relationship:

          
    
∆V = − E • dr∫ .

c.)  By setting that expression into the context of our problem--that
is, by evaluating it between the zero electrical potential point and an
arbitrary point r, we can write:

    
V(r) − V(∞) = − E • dr

r=∞

r

∫ .

Note:  Why is this desirable?  Because by our own definition, V(∞) = 0.
That means that the evaluation of the integral will leave us with a general
expression for V(r), which is exactly what we want.

d.)  Minor problem:  To do this integral, we need to have a general
expression for the electric field E IN THE REGION OVER WHICH
THE INTEGRAL IS TO BE TAKEN.  To get that, we will use GAUSS'S
LAW.  Defining a spherical Gaussian surface whose radius is r > R2,
we get:
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e.)  Knowing the electric field in the region outside the sphere, we
can now proceed to determine the electrical potential function for this
charge configuration:
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6.)  For R2 > r > R1:

a.)  This is considerably more interesting because it introduces a
problem with which we have not yet had to cope.  We want to determine
∆V between infinity and a point r units from the sphere's center,
where r is inside the sphere.  The difficulty is that the electric field
function inside the sphere is different from the electric field function
outside the sphere.  So what E do we use in -∫E.dr?
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b.)  We must use E for the region in which it is applicable.  That
means:

i.)  To determine the voltage difference between r = ∞ and r = R2
(this will be V(R2) - V(∞)), we must use the electric field function
derived for the field outside the shell (i.e., Eoutside);

ii.)  To determine the voltage difference between r = R2 and an
arbitrary point r in between R1 and R2 (this will be V(r) - V(R2)), we
must derive an electric field function for the field inside the shell
(call this Einside).

iii.)  The net electrical potential difference between r = ∞ (i.e.,
where the electrical potential is zero) and an arbitrary position r
units from the center and inside the sphere will be:

        [V(r) - V(R2)] + [V(R2) - V(∞)] = V(r).

c.)  To determine Ein, we must use Gauss's Law.  Shown in
truncated form below, this yields:

    

Einside • dS =
ρdV∫
εoS
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d.)  We can now use our approach to determine V(r):
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 7.)  For R1 > r:

a.)  Using the approach outlined above, we can write:

           V(r) = [V(r) - V(R1)] + [V(R1) - V(R2)] + [V(R2) - V(∞)].

That is, the voltage jump from infinity to R2 plus the voltage jump be-
tween R2 and R1 plus the voltage jump from R1 to r will give you the net
voltage jump between infinity (where V = 0) and r inside the hollow.

b.)  We already know the electric field function for the outer and in-
side-shell portions.  What is the electric field function inside the hol-
low?

A Gaussian surface that resides inside the hollow will have no
charge enclosed within its bounds.  That means the electric field in
that region must be zero.

c.)  Zero electric field in a region means no electrical potential dif-
ference from point to point in the field. This, in turn, implies a con-
stant electrical potential throughout the region.

d.)  Electrical potential functions, being energy related, must be
continuous functions (electric field functions, on the other hand, do not
have to be continuous).  As such, the electrical potential at the edge of
the hollow will be the same as the electrical potential anywhere inside
the hollow.  Knowing that, we can write:
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FIGURE 15.14

Cross-section of Coaxial System
     --Cylindrical Symmetry--
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Note:  This is important.  The electrical potential will be the same at
every point in a region in which the electric field is zero.  THIS INCLUDES
REGIONS INSIDE CONDUCTORS.  Although you haven't seen a problem
with a conductor in it yet, you will.

I.)  Absolute Electrical Potential for a Cylindrically Symmetric Charge
Configuration:

1.)  The approach we have used for the determination of the electrical
potential function of a complex charge configuration with spherical symme-
try will also work for charge configurations that have cylindrical symmetry
(with a twist that will become evident shortly).  The following example will il-
lustrate this.

2.)  A conducting cylindrical shell of radius R2 has a constant surface

charge density σ on it (see
Figure 15.14).   Down its central
axis runs a wire of radius R1
whose linear charge density -λ
is constant.  Determine a
function for the absolute
electrical potential at r, where r
< R1.

a.)  Assuming the
electrical potential is zero
at infinity, we need to
execute the following
operation:
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3.)  To execute the operation, we need to use Gauss's Law to determine
the various electric fields.  Doing so yields:

a.)  For r < R1:

i.)  Because we are dealing with a conducting wire, free charge
on the wire distributes itself along the wire's outer edge leaving no
charge inside that surface.  As such, the electric field is zero.

b.)  For R1 < r < R2:

i.)  There is a negative charge per unit length along the central
axis.  If we define a Gaussian cylinder of radius R1 < r < R2 and
length L, we get:
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c.)  For r > R2:

i.)  If we define a Gaussian cylinder of radius r (r > R2) and
length L, we get:
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4.)  We are now ready to use our technique.
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5.)  We haven't done anything technically wrong, but we have come up
with an expression that makes no sense (ln (R2/∞) = ln (0) . . . this doesn't ex-
ist).  What happened?

a.)  The electric field function we derived using Gauss's Law (i.e.,
E α  1/r) is actually the field for an infinitely long wire.  Such a wire
would have an infinite amount of charge on it, which automatically
puts it outside the realm of possibility.  For a finite length wire, Gaus-
sian symmetry works (i.e., E is in a radial direction out from the wire)
as long as one doesn't get too far from the wire.  At infinity, the electric
field expression isn't good.

If we had used the differential point charge approach to determine
E, we would have ended up with an electric field expression that was
good for all space around a finite wire.  That function turns out to be E
α 1/r3.  Using our approach with this electric field function would have
yielded a general electrical potential function whose value at infinity
would have been zero, but that wouldn't have exploded for finite r.

b.)  Was this exercise a waste of time?  Nope, not if it made you
think about the approach used to derive V(r) from E.
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J.)  Deriving an Electric Field Function from an Electrical Potential
Function:

1.)  So far, we have used the fact that the change of electrical potential
is related to the area under an electric field versus position graph.  That is,
knowing the electric field for a charge configuration, we have determined V
by being clever with the relationship ∆V = -∫E.dr.

We now want to go the other way, determining E knowing something
about its associated electrical potential function V(r).

2.)  Consider the relationship between the differential potential change
dV, the electric field E that produces the potential field, and a differential
displacement dr over which the change occurs.

a.)  Assuming E and dr are in the same direction (let's assume it is
in the x direction), we can write:

dV = -(Ex)dx.

b.)  It should be obvious from examination that if the above expres-
sion is correct, the x component of the electric field must equal:

Ex = -dV/dx.

c.)  Additionally, similar expressions should be true for the y and z
directions.

3.)  Put in words, the electric field component at a particular point in a
particular direction equals the rate at which the electrical potential changes
as one moves some differential distance in that direction.

Put another way, the electric field must equal the slope of the electrical
potential versus position graph, evaluated at a point of interest.

4.)  The electric field  function is a vector.  The operator that executes a
rate of change with position calculation and makes the result into a vector is
the del operator.  In short,

                  E = −∇V .

K.)  Electric Fields and Point Charge Configurations:

1.)  Take an easy example first.  We know that the electrical potential
for a positive point charge is:
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V = q

4πεor
,

where r is the distance between the field-producing charge q and the point of
interest.  What is the electric field function associated with this electrical po-
tential function?

2.)  We have a small problem here as the function is in radial symme-
try.  The del operator in spherical coordinates is (no, you needn't know this):

   
    
∇V = ∂V

∂r
r + 1

r
∂V
∂θ

Θ + 1
r sin θ

∂V
∂ϕ

Φ








 .

a.)  Using this with our potential function, we get:

       

    

E

   r

   r

   r

   r

= −∇

= −
π

( ) + ( ) + ( )









= −
π

( ) + +







= −
π

−





=
π

V

q r
r r

r
r

r

q r
r

q
r

q
r

o

o

o

o

4
1 1 1 1 1

4
1

0 0

4
1

4

2

2

ε
∂

∂
∂

∂θ θ
∂

∂ϕ

ε
∂

∂

ε

ε

/ /
sin

/

/

.

Θ Φ

Θ Φ

b.)  This is the most general form of the electric field due to a point
charge, complete with radial symmetry.  The problem?  You are not
supposed to know the del operator in spherical coordinates.  To
circumvent the difficulty, we could as well have assumed the point of
interest was along the x-axis and used rectangular coordinates.  Doing
so would yield an electrical potential function of:

            
  
V = q

4πεo

1
x





 .

and an electric field expression of:
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FIGURE 15.15
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c.)  Again, this is the electric field function for a point charge
(though in restricted form as E for a point charge isn't solely a function
of x).

3.)  Consider the two equal
point charges shown in Figure
15.15.

a.)  The electrical
potential at point (x, 0) due
to the top charge q is:

     
  
V = q

4πεor
,

where r = (a2 + x2)1/2.

b.)  The electrical
potential at point (x, 0) due
to the bottom charge q is:

 
  
V = q

4πεor
,

where r = (a2 + x2)1/2.

c.)  The total electrical potential at (x, 0) is the scalar sum of those
two electrical potentials, or:



100

   

    

V
q

r

q
a x

o

o

=
π

=
π +

2
4

2 2 2 1 2

ε

ε
   

( )
./

Note:  What is so nice about using electrical potential functions is that
they are not vectors.  We can add them like scalars--we don't have to hassle
with breaking them into components before using them.

d.)  According to theory, the electric field should be:
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e.)  Lo and behold, this is exactly the expression we derived using
the definition of the electric field for a point charge and the vector ap-
proach introduced in the Electric Field chapter.

f.)  UNFORTUNATELY, WE'VE DETERMINED THE RIGHT
ANSWER BUT WE HAVE DONE SOMETHING DIRTY IN THE
PROCESS.  To see the difficulty, consider the next problem.

4.)  Consider the two opposite point charges shown in Figure 15.16 on
the next page.  Determine the electric field at point (x=b, 0), using the elec-
trical potential function for a point charge.

a.)  The electrical potential at point (x, 0) due to the top charge q is:
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FIGURE 15.16
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Vq = q

4πεor
,

where r = (a2 + x2)1/2.

b.)  The electrical potential
at point (x, 0) due to the bottom
charge -q is:

 
  
V−q = −q

4πεor
,

where r = (a2 + x2)1/2.

c.)  The total electrical
potential at (x, 0) is the scalar
sum of those two electrical
potentials, or ZERO!

d.)  This isn't a problem as far as the electrical potential is con-
cerned.  As long as the potential energy characteristics are main-
tained, finding a zero electrical potential point is perfectly acceptable.
The problem is in trying to use that function in conjunction with the
electric field expression E = - ∇V.

Why won't it work?  The problem is rooted in the fact that E = -∇V
requires a GENERAL expression for the electrical potential (i.e., V(x,
y)) to work properly.  We didn't use such a function in the two positive
charges problem done in the previous section, and we got away with it
due to the problem's charge
symmetry.  Without that
symmetry, we would have
lost.

5.)  Consider the two opposite
point charges shown in Figure
15.17.  Determine the electric field at
point (x = b, 0), using the electrical
potential function for a point
charge.

a.) We must begin by
determining the electrical
potential at an arbitrary point
(x, y).  For the top charge q,
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the electrical potential at (x, y) is:
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b.)  The electrical potential at point (x, y) due to the bottom charge -q
is:
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c.)  The net electrical potential at (x, y) is the scalar sum of those
two electrical potentials, or:
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d.)  The electric field at (x, y) is:
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e.)  This expression is general for any point in the x-y plane.
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FIGURE 15.18
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Electric Field due to Pt. Charges

f.)  It would be interesting to see if the field is correct for a position
along the x-axis.  To find out, substitute x = b, y = 0 into our expression.
Doing so yields:
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g.)  Does this make
sense?  You bet.  Looking
at Figure 15.18, the charge
configuration is shown.
Due to symmetry, the x
components of the electric
fields add to zero while the
y components (after being
added together) equal:
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h.)  Bottom line:  Technically, using E = -∇ V to determine E
requires a general expression for V.  BUT, if all the charge in the
configuration is the same kind (i.e., it is all positive or all negative),
and if you want E at a point of symmetry (i.e., along the x-axis, for
instance, in the two positive charge problem from the previous
section), and assuming you are not squeamish about exploiting a
mathematical anomaly that allows you to do a problem wrong but get
the answer right, then you can get away with setting the problem up as
was originally done in Part 3 of Section K.

QUESTIONS

15.1)  The diameter of a typical hydrogen atom is approximately 10-10

meters across.  The charge on an electron is the same as the charge on a
proton (one elementary charge unit--1.6x10-19 coulomb) and the mass of an
electron is 9.1x10-31 kilograms.  If we assume that the electron follows a
circular path around the proton:

a.)  What is the electric potential at the edge of the atom's boundary
due to the presence of the proton at the atom's center?

b.)  How much electrical potential energy does the electron have
due to the presence of the proton?

c.)  Assuming it is moving with velocity 2.25x106 m/s, what is the
electron's total energy?

15.2)  The areas A and B shown in Figure I are
found to have electrical potential values of VA= -12
volts and VB = +20 volts:

a.)  Re-drawing the sketch larger, draw
in the electric field lines for the region
between and around A and B; and

b.)  Draw the region's equipotential lines at eight-volt intervals.

15.3)  A particle made up of two protons and two neutrons is called an α
particle (the mass of either a proton or a neutron is 1.67x10-27 kilograms--the
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charge on a proton is 1.6x10-19 coulombs; and there is no charge on a neu-
tron).  An α particle is accelerated through an 18 Megavolts electrical poten-
tial difference (one megavolt equals 106 volts).  If the acceleration takes place
along a 12 meter long track:

a.)  Assuming the α particle has no potential energy by the end of
its run, how much potential energy does it have at the beginning of its
run?

b.)  How much work per unit charge does the field do on the α
particle during its run?

c.)  Assuming it starts from rest, what is the particle's velocity
magnitude at the end of the run (approach this using conservation of
energy, not the work/energy theorem)?

15.4)  The following information is known about the constant electric field
shown in Figure II to the right and below:  the electric field intensity is 80 nts-
per-coulomb; the voltage VA =  340 volts; the voltage VE = 320 volts; distance
dAB = .25 meters; the distance dDE = .50 meters and is perpendicular to the
electric field; and Point C's vertical position is half-way between A and B.

a.)  Is VA greater or less than VB?
b.)  Determine the distance dAD some other

way than just eyeballing it.
c.)  Determine VB.
d.)  There are a number of ways to determine

VC.  Pick two ways and do it.
e.)  How much potential energy will be

available to a 6 µC charge when placed at Point A?
f.)  How much work per unit charge is done by

the field as a 6 µC charge moves from Point A to
Point E?

g.)  How much work is done by the field on a 6
µC charge that moves from Point A to Point B?

h.)  If VA had been 340 volts and VB had been
290 volts:

i.)  What would the electric field's direction have been?
ii.)  What would the electric field's magnitude have been?

15.5)  Two equal point-charges (q = 10-16 C each) are placed at opposite
corners of a square whose edges are .4 meters long.  Assuming we neglect
gravity, if q1 = 10-18 C is placed at the exact center of the square and given a
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 Q's worth of charge uniformly 
distributed over the rod's length

FIGURE IV

(x, y)

L

slight nudge toward one of the unoccupied corners, it will accelerate.  Letting
q1's mass be m = 7x10-22 kilograms, what will q1's velocity be by the time it
reaches the unoccupied corner toward which it accelerates?  Do the problem
algebraically first, then put in the numbers.

15.6)  A rod of length 2L has a total charge
Q distributed uniformly upon its surface (see
Figure IV).

a.)  Determine the electrical
potential at an arbitrary point (x, y) in
the field.

b.)  Knowing the electrical potential
function, how could you determine the
electric field at (x, y)?  (You don't need to
actually do it).

15.7)  An electrical potential function:

  V = k1e
−kx + k2 / y3

exists within a region.  Assuming the k terms are constants, what is the
electric field function for the region?

15.8)  An electric field function:

    E i j= +−k e k ykx
1 2

3( / )

exists within a region that excludes y = 0.  If the k terms are constants:
a.)  At what x and y coordinate must the electrical potential be

zero?
b.)  What is the electrical potential function for the region?

15.9)  A very large (essentially infinite) flat conductor has on its surface a
surface charge density equal to 10-10 coulombs per square meter.  Equi-
potential surfaces that differ by 12 volts are plotted in the vicinity of the
conductor's face.

a.)  Relative to the conductor's face, how are the equipotential
surfaces oriented?

b.)  How far apart are the surfaces?
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15.10)  Electric field functions are not continuous.  Electrical potential
functions are continuous.  Explain how you know this must be true.

15.11)  A conducting rod of
radius R1 is surrounded by a
coaxially positioned pipe of ra-
dius R2.  A battery whose voltage
is Vo is connected such that the
rod is attached to the ground of a
battery (assume the electrical
potential of the ground is zero)
while the pipe is attached to the
high voltage side of the power
source.  Derive a general ex-
pression for the electrical poten-
tial between the rod and the
pipe.  In other words, what is
V(r) for R2 > r > R1?

15.12)  A charge Q exists (it is hung from an inconsequential thread) at
the center of a spherical conducting shell of inside radius R1 and outside
radius R2.  Knowing that the shell has 2Q's worth of free charge placed on it,
plot the electric field versus position graph and the electrical potential versus
position graph for this configuration.

After having used the theory to determine the field expressions for the
various regions, substitute the following values into your expressions:  R1 = 2
meters, R2 = 3 meters, and [Q/(4πε o) ] = 1 (that is, assume Q is the right size
for this to be true).

Note:  The above problem could as easily have been a spherical
configuration in which there were surface or volume charge densities, or it
could have been a cylindrical configuration in which there were linear,
surface, or volume charge densities.  Be prepared to deal with any
contingency.

TRANSLATION:  Review GAUSS'S LAW for both spherical and
cylindrical symmetry before your next test!
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